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Abstract In this study we treat scribbling motion as a compositional system in which

a limited set of elementary strokes are capable of concatenating amongst themselves in

an endless number of combinations, thus producing an unlimited repertoire of complex

constructs. We broke the continuous scribblings into small units and then calculated

the Markovian transition matrix between the trajectory clusters. The Markov states

are grouped in a way that minimizes the loss of mutual information between adjacent

strokes. The grouping algorithm is based on a novel markov-state bi-clustering algo-

rithm derived from the Information-Bottleneck principle. This approach hierarchically

decomposes scribblings into increasingly finer elements. We illustrate the usefulness of

this approach by applying it to human scribbling.

Keywords human movement, movement trajectory, movement primitives, clustering,

information bottleneck.

Corresponding author:

Jacob Goldberger

School of Engineering, Bar-Ilan University

Ramat-Gan 52900, Israel

email: goldbej@eng.biu.ac.il

phone: +972-35317053

fax: +972-37384050

(1) The Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel. Tel.: +972-3-
5317755, Fax: +972-3-5317755 · (2) School of Engineering, Bar-Ilan University, Ramat-Gan,
Israel



2

1 Introduction

Human beings and monkeys have an almost endless repertoire of hand movements.

When scribbling, for instance, we can generate complicated forms by continuously

moving our hand for several seconds. It is generally assumed that we produce these

complicated drawings by concatenating a limited set of elementary shapes in a variety

of ways, rather than having a distinct brain representation for all the drawings we

produce. The current work assumes further that complex drawings are compositional

- that is, a very limited set of strokes is used to build a larger set of more complex

shapes, which again can be used to build a larger set of more complex shapes and

so on. Hand movements would thus be made up of basic movements elements. Uti-

lizing this approach, recording the activity of many neurons in the brain of monkeys

while they scribble could shed light on the brain processes associated with such a com-

positional system. A necessary precondition however is to break down drawings into

basic movements. We show that a non-discrete scribbling can be analyzed into such

elements, which raises the problem of how to break down non-discrete signals into dis-

crete elements. The basic elements would be simple drawing segments, which would be

analyzed as bundles of features, which might well have different physical instantiations

in different physical contexts. In this paper we examine how scribbling may be broken

down into simple elements and the rules of concatenation involved. Simple movement

elements which may be combined to form complex motions are sometimes referred to as

‘movement primitives’. For instance, when moving the hand between pairs of targets,

human subjects and monkeys tend to generate straight hand paths with single-peaked,

bell-shaped velocity profiles. These so-called stereotyped movements are invariant even

after changing size, rotation, translation and temporal scaling [8]. These basic move-

ments may be executed sequentially or concurrently (through parameterized superpo-

sition), to create a large movement repertoire [15]. If the movement target is shifted

during 2D movement, the arm trajectory becomes curved in such a way that there

is a vectorial summation of two basic movement elements. This summed trajectory

can then be smoothed and expressed as a cost function [6]. Over the years, different

motion components have been put forward as candidate primitives. One of the first

findings was that it only takes a dozen components to encode a frog’s entire motor

repertoire [5]. Studies have shown that the frog and the rat’s complex limb movements

may be generated by a vectorial summation of modular force fields in the spinal cord

[2], [17]. Thoroughman and Shadmehr [25] showed that humans learn the dynamics of

reaching movements through a flexible combination of primitives that have Gaussian-

like tuning functions encoding hand velocity. They argued that activity of cells in the

cerebellum may encode primitives that underlie the learning of dynamics. These find-

ings suggest that modular primitives are part of both the planning and the execution

of multi-joint limb movements. One year old children’s movements can be decomposed

into a sequence of stereotyped movements each resembling the simple basic movements

of adults [11],[12],[1]. Stroke patients’ initial movements can easily be decomposed into

simple elementary movements with invariant velocity profiles (duration vs. amplitude)

[13]. Sosnik et al. [22] determined whether there is a point in time (“point of no re-

turn”) in which the generation of a planned action is inevitable. Human subjects were

requested unexpectedly to impede free scribbling movement. Their findings suggested

that the “point of no return” phenomenon in humans may reflect a high level kinematic

plan and could serve as a new operative definition of motion primitives. Recent work

done by Polyakov et al. [18] hints that parabolas are used as primitives in monkeys’
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scribbling. A detailed discussion of the issue of primitives and their composition can be

found in the review by Flash and Hochner [7]. Although multiple studies, aimed at un-

raveling characteristics of primitives have been carried out, very little is known about

the rules governing the concatenation of such building blocks into complex movements.

In this paper we examine how scribbling can be broken down into simple elements

and describe the rules of concatenation involved. We then apply a novel algorithm to

samples of human scribbling. We start by breaking a drawing into small strokes and

model each stroke using the directions of ten fractions along the drawing. We consider

that primitive movements are actually a bundle of features, and thus treat the set of

directions as a set of movement features. Next we apply a Mixture-of-Gaussians (MoG)

to group the strokes and compute the Markovian transition probability between groups.

Then, using a novel information-theoretic clustering algorithm we group the Markov

states in a way that minimizes the loss of mutual information between the current

stroke and the upcoming one. We demonstrate the proposed method by applying it to

human scribbling.

The article has two parts. In the first part we present and discuss the proposed clus-

tering algorithm. In the second part we present and discuss the application to human

scribbling. Section 2 introduces the Markov clustering problem and an efficiently com-

puted algorithm. Section 3 briefly reviews the Mixture-of-Gaussian modeling. Section 4

describes the experimental setup and the pre-processing that was applied to the hand-

movement data. Section 5 presents the results obtained by applying the algorithms in

Section 2 to the scribbling data. Finally section 6 discusses the findings.

2 The Markov-State Clustering algorithm

2.1 Notation and model

The process of forming primitives of hand movements, by combining groups of similar-

strokes into clusters according to their behavior along the time axis, is translated in our

approach into the mathematical problem of clustering the states of a Markov process.

In this study we propose an efficient information-theoretic clustering algorithm for this

clustering task.

Let X = {xt} be an n-valued stationary first order ergodic Markov process defined

by the n × n transition matrix A where Aij = p(x1 = j|x0 = i). A function π :

{1, ..., n} → {1, ..., m}, m ≤ n defines a partition of the state-space {1, ..., n} into m

subsets w = {w1, ..., wm} such that wk = π−1(k), k = 1, ..., m. Utilizing π we can

define a new m-state lumped Markov process Y = {yt} in the following way. Define

(y0, y1) = (π(x0), π(x1)), i.e. the joint distribution of y0 and y1 is defined via the

following Markov chain relation:

X0
p(x1|x0)
−−−−−−→ X1

π





y





y

π

Y0 Y1

More explicitly, the joint distribution of y0 and y1 is:

p(y0 = k, y1 = l) =
∑

i∈wk

∑

j∈wl

p(x0 = i, x1 = j)
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Since x is a stationary process, it can be easily verified that the marginal distributions

of y0 and y1 are the same. Let Y be the stationary m-state Markov process defined by

the stochastic matrix p(y1|y0).

Our goal is to cluster the states of the process X to form a new reduced Markov

process that best preserves the structure of the original process X. Intuitively, states

i and j are viewed as similar if both the future conditional distributions p(x1|x0 = i)

and p(x1|x0 = j) and the past conditional distributions p(x0|x1 = i) and p(x0|x1 = j)

are similar. The Information-Bottleneck (IB) principle [26] can be used to formalize

this intuition. The IB principle for this case states that the best clustering function

π of the n states into m clusters is the one that maximizes the mutual information

I(π(x0); π(x1)) = I(y0; y1) over all the partitions of the state-space into m subsets.

Utilizing a standard information-theory manipulation we can derive several equivalent

forms for the cost function we want to minimize.

C(π) = I(x0; x1) − I(y0; y1) (1)

= D(p(x1|x0)‖p(x1|y0)) + D(p(y0|x1)‖p(y0|y1))

= D(p(x0, x1)‖p(y0, y1)p(x0|y0)p(x1|y1))

= H(y0, y1) + H(x0|y0) + H(x1|y1) − H(x0, x1)

where y0=π(x0), y1=π(x1), D is the Kullback-Leibler divergence and H is the entropy

function. The optimal state-clustering is the one that minimizes the information-loss

function C(π).

2.2 The Clustering Algorithm

There is no closed-form solution for the optimization problem posed in Section 2.

Several standard optimization algorithms can be utilized to find the best clustering.

We can use an agglomerative algorithm based on a bottom-up merging procedure.

We can use a K-means clustering algorithms on which the Bregman distance is the

Kullback-Leibler divergence. Alternatively we can apply a greedy sequential algorithm

that can be viewed as a sequential version of the K-means algorithm (see e.g. [19]). In

this study we apply the sequential greedy algorithm which has been found to perform

well in terms of both clustering quality and computational complexity. The sequential

clustering algorithm starts with a random clustering of the states into m clusters. We

go over the n original states in a circular manner and check for each state whether its

removal from one cluster to another can increase the cost function I(y0; y1).

The basic step in each of these algorithms is composed of computing the distance

function between two clusters. It can be verified that in our case the information-

bottleneck principle implies that this distance is the information-loss caused by merging

the two clusters into a single one; i.e. the difference between mutual-information of the

reduced Markov processes before and after the two clusters are merged. We then derive

an explicit and efficiently computed expression for this distance between clusters.

Assume we are given a partition of the Markov states w = {w1, ..., wm} and we

want to compute the information loss caused by merging the clusters w1 and w2 to

obtain a new reduced partition w, = {w1∪w2, w3, ..., wm} into m − 1 clusters. Let y0

and y1 be the Markov chain variables defined by w and let y
,
0 and y

,
1 be the Markov

chain variables defined by w,. The information-loss can be efficiently computed in the
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following way.

d(w1, w2) = I(y0; y1) − I(y,
0; y

,
1) = (2)

I(y0; y1) − I(y0; y
,
1) + I(y0; y

,
1) − I(y

,
0; y

,
1) =

∑

i=1,2

p(wi)D(p(y0|y1 = wi)||p(y0|y1 ∈ w12)) +

∑

i=1,2

p(wi)D(p(y,
1|y0 = wi)||p(y,

1|y0 ∈ w12)) =

p(w12)(JS(p1|0(·|w1), p1|0(·|w2)) + (3)

JS(p0|1(·|w1), p0|1(·|w2))) − p01(w12, w12)I12

where w12 = {w1, w2} and p01, p1|0, p0|1 are the joint and conditional distribu-

tions of the reduced-Markov random-variables y
,
0 and y

,
1. JS is the Jensen-Shannon

divergence. I12 = I(y0; y1|y0, y1 ∈ w12) is the mutual information of the following

joint-distribution matrix:

1

p01(w12, w12)





p01(w1, w1) p01(w1, w2)

p01(w2, w1) p01(w2, w2)



 (4)

where p01(w1, w2) means p(x0 ∈ w1, x1 ∈ w2) etc.

Hence, the distance measure d(w1, w2) takes into account both the future and past

conditional distributions. The possible overlap between these two distance components

is subtracted from the sum. The sequential clustering algorithm requires the computa-

tion of the change in the cost function when moving a state from one cluster to another

which can be efficiently done using expression (3).

One drawback of the sequential algorithm (in contrast to agglomerative approaches)

is that the number of clusters must be given as input to the algorithm. We can slightly

modify the algorithm in such a way that we can simply provide a rough estimation

(upper bound) on the number of desired clusters. Consider the case of a cluster that

contains a single object s. The iterative-sequential algorithm will not merge s into any

other cluster because obviously this cannot increase the cost function I(y0; y1). The

algorithm will always prefer to leave s as a single member of a cluster. In the modified

version we enforce a singleton cluster to be merged into another cluster. This step

reduces the number of clusters by one. Utilizing this scheme, the number of output

clusters can be adapted to the data. Note that in this method each of the output

clusters must contain at least two members. The algorithm is summarized in Table 1.

Since there is no guarantee that the algorithm will find the global optimum, we can

apply the algorithm on several random partitions and choose the best local optimum.

We conclude this section with a short discussion on works related to the cluster-

ing algorithm described above. Information-theoretic approaches have been intensively

used for clustering and co-clustering methods [26,4,20]. Unlike previous works, in our

setup the same clustering function π is simultaneously applied to the two random vari-

ables x0 and x1. Ge et al. [9] considered the Markov-state clustering problem as a

parameter estimation problem of a HMM. They viewed the reduced-state model as a

constraint HMM. The original Markov-process is viewed as the observed part of the

HMM and the constraint is that each observed symbol can appear only in one hidden-

state. The similarity between this approach and ours is related to the analogy between
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Input: A Markov transition matrix n × n.
Output: A partition of the Markov states into (at most) m

clusters.

Algorithm:
1. Choose a random partition of the Markov state into m

clusters.
2. Loop until there is no change

– for s = 1, ..., n

– Remove state s from its current cluster.
– If s is the only member of its cluster, delete the

cluster.
– Merge s into the cluster wk that minimizes the

distance d({s}, wk). (see expression (3)).

Table 1 The Markov-states clustering algorithm

EM and IB described in [21]. Note that in our derivation (unlike similar approaches

[9]) there is no need to recompute the entire score (whose computational complexity

is O(n2)) for each sequential update. The distance measure d(w1, w2) is only based

on a small part of the transition matrix related to the states in w1 ∪ w2 and it can

be computed in O(n) operations. Meila and Shi [16] demonstarted the connection be-

tween spectral clustering and clustering the states of a Markov transition matrix of

a random-walk process defined by the pairwise-distance matrix. In their approach a

cluster of states is characterized as follows. Once the process is in one of the members

of the cluster it tends to remain in the cluster.

3 The Gaussian Mixture Model

In this study we utilize the Mixture of Gaussians model (MoG) to cluster a set of

strokes into groups based on a feature set representation. This is done as a prepro-

cessing step before we apply the clustering algorithm described above. For the sake of

completeness we provide a brief review of the MoG model. Generally, the distribution

of a d-dimensional random variable is a mixture of k Gaussians if its density function

is a weighted sum of Gaussian densities:

f(x) =
k

∑

j=1

αj
1

√

(2π)d|Σj |
exp{−

1

2
(x − µj)

T
Σ

−1
j (x − µj)} (5)

where αj are the probabilities of occurrence of each Gaussian and µj , Σj , are the

mean and the covariance matrix of each Gaussian respectively. In our implementation

we further assume that the covariance matrices are scalar and all the components share

the same matrix. In this case expression (5) is reduced to

f(x) =
1

(2πσ2)d/2

k
∑

j=1

αj exp(−
1

2σ2 ‖x − µj‖
2) (6)

where σ2 is the variance parameter. Given a set of samples x1, ..., xn ∈ Rd we can

utilized the well known iterative EM algorithm [3] to find the maximum likelihood

parameter set.
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4 Experimental Setup and Data Pre-Processing

Male participants in their 20s were trained for ten blocks, one minute each, spaced

two minutes apart. The participants controlled the position of a 5 mm diameter green

circle cursor with a horizontal 2-jointed low-friction manipulandum. The cursor and

workspace were projected on a horizontal board at chest level in front of the partici-

pant so that his hand position was mapped directly onto the cursor position. A sheet

of plain white paper was placed on the table and prevented the participant from seeing

his hand; it also enabled the projected light to be reflected from the board. During

the experiment, the manipulandum’s angular position was transformed into X-Y coor-

dinates and was recorded at a rate of 100Hz. In order to remove the high frequency,

small jerky movements caused by physiological tremor, the data were smoothed by a

Gaussian filter, at an 8 Hz cut off frequency. The participant was asked to shift the

manipulandum handle freely over the workspace once hearing a “GO” signal and stop

upon hearing a “STOP” signal. During the sessions every time an invisible target on

the workspace was hit, a short beep was heard and the participant was rewarded with

a small amount of money. At the end of the last session the participant received the

accumulated amount of money. The invisible target was a 30 mm diameter circle ran-

domly positioned at one of 23 potential locations and was re-positioned every time

it was hit by the participant. If a target was not hit within five seconds, its position

changed randomly to a new location. The cursor’s position was monitored and traced

so that the outcome looked like a scribbled drawing [22]. Figure 1 shows the kinetic

behavior of a hand trajectory (scribbling) of three participants (G, O and D) in a 6

second section.

Using the tangential velocity profile (Figure 1d), we segmented the trajectory so

that each stroke’s initial velocity would correspond to a local minimum or maximum

velocity along the entire trajectory. Naturally, each stroke’s final velocity corresponds

to the next local maximum or minimum velocity along the entire trajectory. Note that

the beginning and the end points of the movement along the velocity profile were

regarded as a local minimum. We used the local extrema in the tangential velocity as

it was found that these are the points at which the movement speed parameters may

abruptly change [27]. The outcome of the segmentation procedure is two sets of strokes

- accelerating and decelerating. Next we extracted features from each stroke. Motivated

by methods that were successfully applied to on-line hand-writing recognition systems

[24], we modeled the strokes using the directions of 10 equidistant (either in their time

duration or length) fractions along the drawing. We obtained 10 angles (made by the

tangents and the horizon) as a reproducible description of the stroke. Note that the

angle parameter is invariant to both size and translation of the input stroke. Thus,

each stroke was represented as a single point in a 10-dimensional feature space. Our

goal was to find the minimal number of fractions and angles that would enable us to

reconstruct the original strokes in a reliable manner. For linear strokes, one fraction

would enable us to successfully guess the original one. On the other hand, curved strokes

demand a higher number of fractions and the original strokes can never be depicted

precisely. Note that all the strokes should share the same number of fractions. Figure

2 depicts the mean square error between the original strokes and the reconstructed

ones given different numbers of fractions. We concluded that 10 angles sufficed to

minimize the stroke reconstruction error to a satisfatory level. It should also be noted

that although figure 2 presents only participant G’s reconstruction error, this behavior
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(a) (b)

(c) (d)

Fig. 1 A scribbling example 6 seconds of hand movement (scribbling) of three participants:
(a) Participant G, (b) Participant O, and (c) Participant D. (d) 6 seconds of the tangential
velocity as a function of time, using the scribbling of participant G. The other two participants
exhibited similar behavior.

was common to all the participants. From now on we apply our mathematical analysis

to the reconstructed strokes.

Fig. 2 The reconstruction error is the sum of the squared differences between the original and
the reconstructed strokes of participant G.. The reconstruction error monotonically decreases
as the number of fractions increases and saturates at 10 fractions. More than 10 fractions do
not bring the reconstructed strokes much closer to the original ones. Note that the same results
where obtained for all the other participants.
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(a) (b)

Fig. 3 A plot of all the accelerating and the decelerating groups of participant G. Each subplot
describes the reconstructed strokes (not the original ones) from the 10 angles, thus giving all
the strokes the same size and position. (a) Accelerating states. (b) Decelerating states. The
hand movement strokes in each group (plotted in a box) were aligned according to the average
(center-of-mass) point.

5 Experimental Results

We clustered each of the two sets of strokes (accelerating and decelerating) into groups

based on the angle-vectors representation. Each stroke was represented by a 10-dimensional

vector. To simplify the model and to avoid over-fitting, we assumed that every one of

the 10 angles in each stroke was sampled independently from the rest, even though it

is clear that smooth hand movement relies on a dependency among adjacent angles.

Thus, we restricted the covariance matrices to be diagonal. We further constrained all

the Gaussian variances across all dimensions and across all Gaussian components to

be the same. The MoG model, therefore, consists of scalar covariance matrices which

are all the same. This results in a single variance parameter that needs to be learned

from the data.

In order to find the maximum-likelihood parameter-set of the MoG model, we

used the EM algorithm. Additionally, the M-step is affected by the constraints that

we imposed on the covariance matrices. We put the feature vectors into groups. The

number of groups was empirically chosen as the minimal number of groups that could

model the variability in the stroke data. The variance parameter that was learned

throughout by the EM algorithm was σ2 = 0.01. In other words, the standard deviation

was found to be 0.1 radians. To assign the feature vectors into groups we had to

consider the cyclic nature of angles. Hence, angles such as 1 degree and 359 degrees

were considered to be close to one another. While computing the Gaussian density of

a stroke we always computed the distance between the mean angle and the observed

angle along the direction that yielded a smaller distance. Since the variances were found

to be much smaller than 360 degrees, this makes sense. After the MoG was learned

we could label the strokes. We assigned each stroke to the Gaussian component with

the maximal posterior-probability. The groups’ labels were used to estimate a Markov

transition matrix. Figure 3 presents a set of states obtained from the EM algorithm.

Every subplot depicts a state derived from the MoG model. The strokes are not all

alike though most of them have the same structure as can be expected when dealing

with a Gaussian distribution. Figure 3 presents participant G’s reconstructed strokes.
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The Markovian transition matrix presented in Figure 4 is based on participant G’s

results. It describes the probability that the next stroke will belong to state i, given

that the present stroke belongs to state j. The Markovian matrix reveals a 4 quadrant

probability structure, where the non-zero probabilities are contained within the two off-

diagonal quadrants. This special structure can be accounted for by the fact that states

0-22 are states of accelerating strokes whereas states 23-46 are states of decelerating

strokes, and strokes from one group must follow and be followed by the strokes from

the other.

Fig. 4 The Markov transition matrix of participant G. Every cell in the transition matrix
represents the conditional transition probability between two states. The color of each cell is
equivalent to its two-states transition probability. For example, the red cell in (a) indicates
that for a given stroke from the 13th state, the probability of the next one being taken from the
35th state is about 90%. The probabilities for each row sum up to 1. The two-block structure
corresponds to the notion that accelerating strokes should precede decelerating strokes and
vice versa.

Our next step was to group the states of the Markovian process into clusters. The

clustering algorithm described in Section 3 was utilized for this task. This algorithm

was implemented on those strokes that were assigned to a specific state based on an

equal time division or based on an equal length duration. Figure 5 presents the mutual-

information (MI) clustering-quality score as a function of the number of clusters for the

three participants. As can be seen, we obtained a flattened curve, i.e., in the range of 8-

12 clusters(participant G) or 6-10 clusters (participants D and O) a significant decrease

in the MI took place. Twelve (out of 8-12) and 8 (out of 6-10) clusters were selected

as they seem to generate the clearest structure in the grouped transition matrices.

When reordering the rows and columns of the matrix in Figure 4 so as to have all

states of strokes within one cluster occupy adjacent rows (columns) we obtained Figure

6. Figure 6 presents a block structure Markovian transition matrices. The block struc-

ture corresponds to the notion that states that share the same clusters are adjacently

positioned. Following the transitions with the highest probabilities, shown in Figure

6a, it is clear that a stroke from cluster 1 is most likely to be followed by a stroke from

cluster 2, which in turn is most likely to be followed by a stroke from cluster 3, which

is most likely to be followed by a stroke from cluster 4. The next most likely stroke

to follow belongs to cluster 1 again; thus clusters 1, 2, 3, and 4 form a cycle which
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Fig. 5 The mutual-information (MI) score of the clustered Markov process as a function of
the number of clusters for the three participants (participants G, O and D).

tends to repeat itself. Similarly, clusters 5, 6, 7, 8 and 9, 10, 11, 12 form two additional

cycles.

Sequences of clusters, like patterns of sounds that tend to follow each other with

high probability, are like words, and the tendency of each such sequence to repeat

several times is like a phrase. The matrices in Figure 6 also indicates the structure of

transition between phrases. For example, in Figure 6a, the transition from a phrase

constructed from repetitions of word 1 (clusters 1, 2, 3, 4) into a phrase constructed

from repetitions of word 2 (clusters 5, 6, 7, 8) occurred almost solely from the first

state of cluster 3 to the second state of cluster 8 (the small cyan square in row 7 and

column 26).

Figure 7 presents a set of participant G’s twelve clusters, in a twelve row structure,

obtained as a result of the clustering algorithm. Each cluster has a geometry structure,

specific direction and acceleration orientation.

6 Discussion and Conclusion

The results presented in Section 5 illustrate that the algorithm described here can

successfully reveal the inner structure of the scribbling data.

However, several somewhat arbitrary decisions were made. Initial parsing of motion

into very small strokes may be unjustified. A simple intuition suggests that each element

of motion has a bell-shaped velocity profile and therefore, breaking down motion be-

tween minima of tangential velocity might be more adequate. However, psychophysics

indicates that different motion elements may be concatenated at inflection points where

velocity is maximal [27]. The recent discovery of parabolas as putative primitives also

shows concatenation at points of maximal velocity but without inflection in curvature

([18]). Thus breaking at both minima and maxima of tangential velocity are more

appropriate. In cases where such a break constitutes only one half of an elementary

motion, this would show up easily in the Markovian transition matrix (e.g. the red cell

in Figure 4a). Thus, there is no claim that the small strokes presented in Figures 3 and

7 are ‘primitives’ of any sort.
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Fig. 6 Markov transition matrices. The states from the matrix in figure 4 were rearranged so
that states that are members of the same cluster correspond to adjacent rows (and columns).
(a) participant G.: The 12 block structure corresponds to the 12 clusters of states forming the
outcome of the clustering procedure. Clusters < 1, 2, 3, 4 >, < 5, 6, 7, 8 >, < 9, 10, 11, 12 >

form 3 cycles that could be viewed as words in a language. (b) and (c) participant O and D
respectively: 8 block structure of clusters < 1, 2, 3, 4 >, < 5, 6, 7, 8 > form 2 cycles.

Taking angles as the features which describe each small stroke is arbitrary as well.

However, in view of the notion that activity of neurons in the upper-arm areas of the

motor cortices are related mostly to the direction of arm motion [10], [23], this choice

seems reasonable. Neglecting the position and size of the motion is somewhat limiting
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Fig. 7 Participant G’s 12 clusters of Markov states, based on equal-distance division. Each
row represents a cluster whereas each subplot represents a state. For the sake of simplicity the
orange arrows indicate the movement and acceleration orientation.

as will be discussed later. Selecting 10 points along each stroke seems justified as seen

from the low approximation error achieved with 10 points (Figure 2). When the points

were taken at equal distances along the stroke, the error was somewhat larger compared

to 10 equi-time points. This can be understood in view of the psychophysics of motion

where speed is lower for higher curvature [14]. Thus, in equi-time sampling there are

more dense points at regions of high curvature and the fidelity of stroke reconstruction

is higher. The initial parsing from low to high speed and from high to low speed dictates

treating the accelerating and decelerating strokes separately.

Treating the vectors of 10 angles as a mixture of Gaussians with no correlations

between angles is definitely inaccurate. The strokes are very smooth, which means

there is a high correlation between adjacent angles. We used this treatment because it

greatly simplified the classification and the end result (Figure 3 showed a reasonably

good separation into classes). There are also a few aberrant strokes (e.g. the highly

curved strokes in classes 11 or 28 in 3). These are the outcome of forcing every stroke

to belong to some class. It might have been wiser to exclude such exceptional strokes

from the study. However as there were only very few of them their inclusion did not

affect the results. Using the proposed method for clustering the Markov states seemed

to work well.

However, the transition from shallow to steep decline in mutual information with a

decreasing number of clusters (Figure 5) is gradual in the range of 8-12 clusters(participant

G) or 6-10 clusters (participants D and O). Considering the way we parsed the motion

into strokes, it is reasonable to assume that the clusters should include an even number

of states (sets of accelerating-decelerating pairs). Selecting 12 clusters for participant

G and 8 clusters for participants D and O seemed to generate the clearest structure in

the grouped transition matrices in Figure 6.

Careful examination of these matrices (Figure 6) reveals a great deal about the

internal structure of the scribbling. As noted in Section 4, all the participants’ clusters

could be organized into a words structure. Participant G’s clusters could be organized
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into 3 words, composed of clusters 1, 2, 3, 4, 5, 6, 7, 8, and 9, 10, 11, 12. Let us

refer to them as words w1, w2, and w3. The matrix reveals that each of these words

tends to repeat itself, such that there are ‘phrases’ composed of < w1, w1, w1, >,

< w2, w2, w2, >, and < w3, w3, w3, >. Let us call them p1, p2, and p3.

Participants O and D scribblings were sorted into 2 words, w1 composed of 1,2,3,4

and w2 composed of 5,6,7,8 which again could be organized in a repeating alternate

phrases p1 and p2.

What remains unclear is which of the four classes in each word begins the phrase

cycle. The transitions between participant G’s three phrases form a paragraph struc-

ture. p1 is a transition phrase from which the drawing may continued either by p2 or

p3. Both p2 and p3 terminate by going back to p1, but there are no direct transitions

between p2 and p3. Thus these transitions between words and phrases can be regarded

as the syntax of the drawing language. Note that the transitions into and out of phrases

are confined to individual allophones (single cell in the matrix). The general structure

of the drawing emerges as follows. p2 is up and down strokes. It ends by an oblique

lower-left to upper-right strokes and back (p1). p3 is left and right strokes and it too

ends by the oblique p1 phrase. This can actually be seen by observing 25 seconds of

scribbling.

However, participant G also scanned the entire workspace by gradually moving from

one side to the other, and only shifted from one scanning style (phrase) to another when

reaching the edge. The drift and position of the changing style rule did not emerge in

our analysis probably because the position of the motion in the workspace was not one

of the features used to classify the strokes.

In conclusion, our algorithm can reveal the inner structure of scribbling and the

laws of its composition.

In future studies we intend to apply this analysis to experiments in which monkeys

scribble while their motor cortex activity is recorded by multiple micro-electrodes. We

plan to decompose these recordings using the HMM algorithm to articulate a set of

neural states. The idea is to find a match between a set of movement elements and a

set of brain activity recording fragments.
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